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Question 1.1: Real-time communication aspects of control between the UAV and Ground station.

Directional antennas provide crucial advantages for UAV communication performance. Signal quality is improved by generating
highly focused beams with increased power in the main lobe. A concentrated signal minimizes power leakage. The small
footprint of directional antennas reduces interference, enhancing the overall UAV network performance. [1]

One of the aspects that need to be considered when choosing a flight controller for a UAV is whether or not it needs to
incorporate GPS tracking. Popular GPS flight controllers include the Pixhawk PX4 with a high performance processor, the F7 AlO
with a built in Bluetooth module, the OMNINXT F7 Airbot, built on the new NXT flatform. [2] Simpler options like Arduino and
Raspberry Pi can be used as flight controllers if the necessary packages and components were to be installed.

Communication protocols are used to exchange messages, containing UAV status information and control commands, to and
from the ground control station (GCS) and the UAV. External communication protocols vary between radio frequency, satellite,
Wi-Fi, Bluetooth and cellular. [3] Internal communication protocols include UART, SPI, I2C and PWM. Messaging protocols for
communicating with drones include UAVCan, MAVLink and UranusLink.

A UAV without a GPS feedback is commonly referred to as a GPS-denied UAV and relies on numerous sensors to operate.
Obstacle avoidance and onboard visual sensors can provide reference points, allowing the UAV to hover in one place and
stabilize itself while in flight.

Onboard optical sensors, providing reference points and data regarding the UAV’s altitude and location is one form of feedback
that can be used. LiDAR sensors can provide real-time location by sending laser light pulses in its path, effectively creating 3D
maps of the UAV’s environment. [4]

Emesent’s Hovermap is a device that captures accurate data using Lidar mapping and has a sensing range of up to 300 meters.
Its pilot assist mode provides stability control, line of sight capability and collision avoidance. [5]
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Figure 1: Block Diagram of a UAV Autonomous Control Flight System

Question 1.2: Block diagram representing the electrical and mechanical system components.
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Figure 2: Block diagram representing the electrical and mechanical system components.

Question 1.3: Forward path transfer function using the given parameters.
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Figure 3: Simulink model to obtain step and frequency response.
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Figure 4: Step response graph Figure 5: Frequency sweep graph

Question 1.4: determine the range of gain, K, required for stability.

6.6K

Uncompensated System:

6.6K

6.6K
$34+101.752+170s

. 1+aTs 2
Multiply Controller: ( ) X
1+Ts

Given egs < 0.1: Ky, ==—=10
- . 6.6K
Determining K: K, =limsG(s) = — =10 K = 257.58
$50 170

Determine range of K for marginally stable system using the characteristic equation:

s34+ 101.7s% + 170s + 6.6K

s3 1 170
s? 101.7 6.6K
st 17289 — 6.6K

101.7
s 6.6K

System stable for:

0<K>2620

The Routh-Hurwitz criterion shows that the gain K = 257.58 is acceptable as it falls between the range of K for a marginally

stable system.
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Figure 4: Graphs for uncompensated system (K = 1)

Conclusion: From Bode diagram we get GM = 68.4 dB and PM = 88.7 dB.
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Figure 5: Graphs for response when K = 257.58 (within the range of stability)

Question 1.5: Stage 1 Design a phase — lag controller
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3
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For a PM of 60 degrees we get w; = 0.98 rad/sec. This yields a new dB = 19.5
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Figure 7: Bode and step response after adding the Lag compensator.

Conclusion: A percentage overshoot of 16.7% can be read off the graph, which meets the design requirement of
less than 20%. The PM = 55.5 deg and the GM = 39.7 dB.

Question 1.6: Stage 2: Design a phase — lead controller with a phase margin of 80 deg.
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Figure 9: Bode and step response after adding the Lead compensator.

Conclusion: The compensated system has PM = 94.8 deg and GM = 44.7 dB. The percentage overshoot has reduced
as a result of adding the lead controller.



Question 1.7: Convert the two-stage controller into the z-domain.

MATLAB Code:
Gp =

Glead num = [0.84 1];

Glead den = [0.00643413 1]; 8.568 572 + 11.04 5 + 1

Glead = tf(Glead num, Glead den);

0.6254 s~2 + 97.21 5 + 1

Glag num = [10.2 1];
Glag den = [97.2 11; Continuous-time transfer function.

Glag = tf(Glag num, Glag den);

Gp = Glead*Glag; Gz =
display (Gp) ;

7.759 z~2 - 15.42 z + 7.659
freq = 100;
T = 1/freq' z*2 - 1.125 z + 0.1254
Gz = c2d(Gp T, 'tustin'); Sample time: 0.01 seconds
display(Gz) ’ ! ! Discrete-time transfer function.

Question 1.8: Replace the 2-stage controller with a PID controller block.

To simplify the system architecture, a PID controller can be used to handle both the phase-lag and phase-lead aspects. Tuning
the PID controller requires adjusting the three parameters. The Proportional term controls the error response, the Integral term
eliminates the steady state error, and the Derivative term helps reduce overshoot by including damping.

Design approach for a PID Controller:

Obtain an open-loop response to determine what is required to improve.
Add a Proportional control to improve rise time and error constant.

Add a Derivative control to improve the overshoot.

Add an Integral control to eliminate steady-state error.

Adjust each Kp, K; and K}, until the desired overall response is achieved.

s W e

Kp, K; and K}, effects on a Closed Loop system:

Closed Loop Response Rise Time Overshoot Settling Time Steady-State
Error
Kp Decrease Increase Small Change Decrease
K; Decrease Increase Increase Eliminate
Kp Small Change Decrease Decrease No Change
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